
HDL Coder™
Getting Started Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Getting Started Guide
© COPYRIGHT 2012–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2012 Online only New for Version 3.0 (Release 2012a)
September 2012 Online only Revised for Version 3.1 (Release 2012b)
March 2013 Online only Revised for Version 3.2 (Release 2013a)
September 2013 Online only Revised for Version 3.3 (Release 2013b)
March 2014 Online only Revised for Version 3.4 (Release 2014a)
October 2014 Online only Revised for Version 3.5 (Release 2014b)
March 2015 Online only Revised for Version 3.6 (Release 2015a)
September 2015 Online only Revised for Version 3.7 (Release 2015b)
October 2015 Online only Rereleased for Version 3.6.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.8 (Release 2016a)
September 2016 Online only Revised for Version 3.9 (Release 2016b)
March 2017 Online only Revised for Version 3.10 (Release 2017a)
September 2017 Online only Revised for Version 3.11 (Release 2017b)
March 2018 Online only Revised for Version 3.12 (Release 2018a)
September 2018 Online only Revised for Version 3.13 (Release 2018b)
March 2019 Online only Revised for Version 3.14 (Release 2019a)

About HDL Coder
1

HDL Coder Product Description . 1-2
Key Features . 1-2

Supported Third-Party Tools and Hardware 1-3
Third-Party Synthesis Tools and Version Support 1-3
FPGA-in-the-Loop Hardware . 1-3
Simulink Real-Time FPGA I/O: Speedgoat Target Hardware . . 1-4
Generic ASIC/FPGA Hardware . 1-4
IP Core Generation Hardware . 1-5
FPGA Turnkey Hardware . 1-6

VHDL and Verilog Language Support . 1-8

HDL Coder Supported Hardware . 1-9

Getting Started with HDL Coder
2

Tool Setup . 2-2
Synthesis Tool Path Setup . 2-2
HDL Simulator Setup . 2-3
Xilinx System Generator Setup for ModelSim Simulation 2-4
Altera DSP Builder Setup . 2-5
FPGA Simulation Library Setup . 2-5
C/C++ Compiler Setup . 2-6

v

Contents

Tutorials
3

HDL Code Generation and FPGA Synthesis from a MATLAB
Algorithm . 3-2

About the Algorithm in This Example 3-2
Create Local Copy of Design and Testbench Files 3-3
Set Up Synthesis Tool Path . 3-3
Test the Original MATLAB Algorithm 3-3
Set Up a Project Using HDL Coder App 3-4
Open the HDL Coder Workflow Advisor 3-6
Create Fixed-Point Versions of the Algorithm and Test Bench

. 3-7
Generate HDL Code . 3-9
Verify Generated HDL Code . 3-9
FPGA Synthesis and Implementation 3-9

Create Simulink Model for HDL Code Generation 3-11
Open Model and HDL Coder Library 3-11
Develop Design and Test Bench . 3-14
Simulate and Verify Functionality of Design 3-16
Check Model for HDL Compatibility 3-17

Check HDL Compatibility of Model Using HDL Model Checker
. 3-19

Simple Up Counter Model . 3-19
Open the HDL Model Checker . 3-20
How to Run Checks In the HDL Model Checker 3-21
Run Checks for Counter Model . 3-22
Fix HDL Model Checker Warnings or Failures 3-23
Caveats . 3-25
Generate HDL Code . 3-26

Generate HDL Code from Simulink Model 3-27
Simple Up Counter Model . 3-27
Generate HDL Code . 3-28
View HDL Code Generation Files . 3-30
Verify Generated HDL Code . 3-30

Verify Generated Code from Simulink Model Using HDL Test
Bench . 3-32

Simple Up Counter Model . 3-32
How to Verify the Generated Code . 3-33

vi Contents

What is a HDL Test Bench? . 3-33
Generate HDL Test Bench . 3-34
View HDL Test Bench Files . 3-35
Run Simulation and Verify Generated HDL Code 3-36
Deploy Generated HDL Code on Target Device 3-37

HDL Code Generation and FPGA Synthesis Using Simulink
HDL Workflow Advisor . 3-39

Simple Up Counter Model . 3-39
About HDL Workflow Advisor . 3-40
Set Up Tool Path . 3-40
Open the HDL Workflow Advisor . 3-41
Generate HDL Code . 3-42
Perform FPGA Synthesis and Analysis 3-43
Run Workflow at Command Line with a Script 3-44

vii

About HDL Coder

• “HDL Coder Product Description” on page 1-2
• “Supported Third-Party Tools and Hardware” on page 1-3
• “VHDL and Verilog Language Support” on page 1-8
• “HDL Coder Supported Hardware” on page 1-9

1

HDL Coder Product Description
Generate VHDL and Verilog code for FPGA and ASIC designs

HDL Coder generates portable, synthesizable VHDL® and Verilog® code from MATLAB®

functions, Simulink® models, and Stateflow® charts. The generated HDL code can be used
for FPGA programming or ASIC prototyping and design.

HDL Coder provides a workflow advisor that automates the programming of Xilinx®,
Microsemi®, and Intel® FPGAs. You can control HDL architecture and implementation,
highlight critical paths, and generate hardware resource utilization estimates. HDL Coder
provides traceability between your Simulink model and the generated Verilog and VHDL
code, enabling code verification for high-integrity applications adhering to DO-254 and
other standards.

Key Features
• Target-independent, synthesizable VHDL and Verilog code
• Code generation support for MATLAB functions, System objects and Simulink blocks
• Mealy and Moore finite-state machines and control logic implementations using
Stateflow

• Workflow advisor for programming Xilinx, Microsemi, and Intel application boards
• Resource sharing and retiming for area-speed tradeoffs
• Code-to-model and model-to-code traceability for DO-254
• Legacy code integration

1 About HDL Coder

1-2

Supported Third-Party Tools and Hardware

In this section...
“Third-Party Synthesis Tools and Version Support” on page 1-3
“FPGA-in-the-Loop Hardware” on page 1-3
“ Simulink Real-Time FPGA I/O: Speedgoat Target Hardware” on page 1-4
“Generic ASIC/FPGA Hardware” on page 1-4
“IP Core Generation Hardware” on page 1-5
“FPGA Turnkey Hardware” on page 1-6

Third-Party Synthesis Tools and Version Support
The HDL Workflow Advisor is tested with the following third-party FPGA synthesis tools:

• Intel Quartus Prime 17.1
• Xilinx Vivado® Design Suite 2018.2
• Microsemi Libero® SoC 11.8
• Xilinx ISE 14.7

To use third-party synthesis tools with HDL Coder, a supported synthesis tool must be
installed, and the synthesis tool executable must be on the system path. For details, see
“Tool Setup” on page 2-2.

FPGA-in-the-Loop Hardware
The FPGAs supported for FPGA-in-the-loop simulation with HDL Verifier™ are listed in
the HDL Verifier documentation.

You can also add custom FPGA boards using the FPGA Board Manager. See “FPGA Board
Customization” for details.

For FPGA-in-the-Loop or Customization for USRP® Device using the HDL Workflow
Advisor, a supported synthesis tool must be installed, and the synthesis tool executable
must be on the system path. For details, see “Tool Setup” on page 2-2.

 Supported Third-Party Tools and Hardware

1-3

Simulink Real-Time FPGA I/O: Speedgoat Target Hardware
Speedgoat
I/O Module

FPGA
Device

Synthesis Tool

IO342 Xilinx Kintex
UltraScale

For more information and to learn about the synthesis tool
requirements, see Xilinx HDL Support with Speedgoat IO
Modules.IO333, IO334,

IO335
Xilinx
Kintex-7

IO332, IO397 Xilinx Artix-7
IO323, IO331 Xilinx

Spartan-6

Generic ASIC/FPGA Hardware
The following hardware is supported for the Generic ASIC/FPGA workflow:

Synthesis Tool Device Family
Xilinx Vivado Kintex7

Artix7
Kintex UltraScale+
KintexU
Spartan7
Virtex UltraScale+
Virtex7
VirtexU
Zynq
Zynq UltraScale+

Xilinx ISE Virtex6
Virtex5
Virtex4
Spartan-3A DSP
Spartan 3E

1 About HDL Coder

1-4

https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software

Synthesis Tool Device Family
Spartan3
Spartan6

Altera® Quartus II Cyclone® III
Cyclone IV
Arria® II GX and GZ
Stratix® IV
Stratix V
Cyclone III
Arria 10
Arria V GX
MAX 10

Microsemi Libero SoC SmartFusion2 SoC
RTG4
IGLOO2

IP Core Generation Hardware
The following hardware is supported for the IP Core Generation workflow:

Synthesis Tool Target Platform
Xilinx Vivado Zedboard and with FMC-HDMI-CAM and

FMCOMMS2/3/4/
ZC706 and with FMC-HDMI-CAM and
FMCOMMS2/3/4/
ZC702 with FMC-HDMI-CAM
Zynq ZC706 evaluation kit
Zynq ZC702 evaluation kit
PicoZed FMC-HDMI-CAM

Altera Quartus II Arria 10 SoC development kit

 Supported Third-Party Tools and Hardware

1-5

Synthesis Tool Target Platform
Cyclone V SoC development kit Rev. C and
Rev. D
Arrow DECA Max 10 FPGA development
board
Arrow SoCKit development board
Arria 10 GX FPGA development kit

FPGA Turnkey Hardware
The following hardware is supported for the FPGA Turnkey workflow:

• Altera Arria II GX FPGA development kit
• Altera Cyclone III FPGA development kit
• Altera Cyclone IV GX FPGA development kit
• Altera DE2–115 development and education board
• XUP Atlys Spartan-6 development board
• Xilinx Spartan-3A DSP 1800A development board
• Xilinx Spartan-6 SP605 development board
• Xilinx Virtex-4 ML401 development board
• Xilinx Virtex-4 ML402 development board
• Xilinx Virtex-5 ML506 development board
• Xilinx Virtex-6 ML605 development board

For FPGA development boards that have more than one FPGA device, only one such
device can be used with FPGA Turnkey.

Supported FPGA Device Families for Board Customization

You can also add custom FPGA boards using the FPGA Board Manager. HDL Coder
supports the following FPGA device families for board customization; that is, when you
create your own board definition file. See “FPGA Board Customization” (HDL Verifier).

1 About HDL Coder

1-6

Device Family
Xilinx Kintex7

Spartan-3A DSP
Spartan3
Spartan3A and Spartan3AN
Spartan3E
Spartan6
Virtex4
Virtex5
Virtex6
Virtex7

Altera Cyclone III
Cyclone IV
Arria II
Stratix IV
Stratix V

See Also

More About
• “Tool Setup” on page 2-2

 See Also

1-7

VHDL and Verilog Language Support
The generated HDL code complies with the following standards:

• VHDL-1993 (IEEE® 1076-1993) or later
• Verilog-2001 (IEEE 1364-2001) or later

1 About HDL Coder

1-8

HDL Coder Supported Hardware

As of this release, HDL Coder supports the following hardware.

Support Package Vendor Earliest Release
Available

Last Release
Available

Intel FPGA Boards Intel R2013b Current
Intel SoC Devices Intel R2014b Current
Xilinx FPGA Boards Xilinx R2013b Current
Xilinx Zynq Platform Xilinx R2013a Current

For a complete list of support packages, see Hardware Support.

In addition to these packages, HDL Coder includes built-in support for:

• FPGA-in-the-loop simulation with HDL Verifier
• Simulink Real-Time™ FPGA I/O hardware
• Custom FPGA boards using the FPGA Board Manager

For details, see “Supported Third-Party Tools and Hardware” on page 1-3.

 HDL Coder Supported Hardware

1-9

https://www.mathworks.com/hardware-support.html?fq=product:HD

Getting Started with HDL Coder

2

Tool Setup

In this section...
“Synthesis Tool Path Setup” on page 2-2
“HDL Simulator Setup” on page 2-3
“Xilinx System Generator Setup for ModelSim Simulation” on page 2-4
“Altera DSP Builder Setup” on page 2-5
“FPGA Simulation Library Setup” on page 2-5
“C/C++ Compiler Setup” on page 2-6

Synthesis Tool Path Setup
• “hdlsetuptoolpath Function” on page 2-2
• “Add Synthesis Tool for Current HDL Workflow Advisor Session” on page 2-2
• “Check Your Synthesis Tool Setup” on page 2-3
• “Supported Tool Versions” on page 2-3

hdlsetuptoolpath Function

To use HDL Coder with one of the supported third-party FPGA synthesis tools, add the
tool to your system path using the hdlsetuptoolpath function. Add the tool to your
system path before opening the HDL Workflow Advisor. If you already have the HDL
Workflow Advisor open, see “Add Synthesis Tool for Current HDL Workflow Advisor
Session” on page 2-2.

Add Synthesis Tool for Current HDL Workflow Advisor Session

Simulink to HDL Workflow

1 At the MATLAB command line, use the hdlsetuptoolpath function to add the
synthesis tool.

2 In the HDL Workflow Advisor, in the Set Target > Set Target Device and
Synthesis Tool step, to the right of Synthesis tool, click Refresh.

The synthesis tool is now available.

2 Getting Started with HDL Coder

2-2

MATLAB to HDL Workflow

1 At the MATLAB command line, use the hdlsetuptoolpath function to add the
synthesis tool.

2 In the HDL Workflow Advisor, in the Select Code Generation Target step, to the
right of Synthesis tool, click Refresh list.

The synthesis tool is now available.

Check Your Synthesis Tool Setup

To check your Altera Quartus synthesis tool setup in MATLAB, try launching the tool with
the following command:

!quartus

To check your Xilinx Vivado synthesis tool setup in MATLAB, try launching the tool with
the following command:

!vivado

To check your Xilinx ISE synthesis tool setup in MATLAB, try launching the tool with the
following command:

!ise

To check your Microsemi Libero SoC synthesis tool setup in MATLAB, try launching the
tool with the following command:

!libero

Supported Tool Versions

For supported tool versions, see “Third-Party Synthesis Tools and Version Support” on
page 1-3.

HDL Simulator Setup
To open the HDL simulator from MATLAB, enter these commands:

 Tool Setup

2-3

MATLAB Command to Open HDL Simulator

HDL Simulator Command to Open the Simulator
Cadence Incisive® nclaunch
Mentor Graphics® ModelSim® vsim

For example, to open the Mentor Graphics ModelSim simulator, enter this command:
vsim('vsimdir','C:\Program Files\ModelSim\questasim\10.5c\win64\vsim.exe')

To learn more about how to set up ModelSim, Questa®, or Incisive® for HDL simulation,
or for cosimulation with HDL Verifier, see “HDL Simulator Startup” (HDL Verifier).

Add Simulation Tool for Current HDL Workflow Advisor Session

MATLAB to HDL Workflow

1 Set up your simulation tool.
2 In the HDL Workflow Advisor, in the HDL Verification > Verify with HDL Test

Bench task, click Refresh list.

The simulation tool is now available.

Xilinx System Generator Setup for ModelSim Simulation
To generate ModelSim simulation scripts for a design containing Xilinx System Generator
blocks, you must:

• Have compiled Xilinx simulation libraries.
• Specify the path to your compiled libraries.

Required Libraries for Vivado and ISE

To generate ModelSim simulation scripts, you must have the following compiled Xilinx
simulation libraries for your EDA simulator and target language:

• unisim
• simprim
• xilinxcorelib

To learn how to compile these libraries, refer to the Xilinx documentation.

2 Getting Started with HDL Coder

2-4

• For Vivado, see compile_simlib.
• For ISE, see compxlib.

Specify Path to Required Libraries

Specify the path to your compiled Xilinx simulation libraries by setting the
XilinxSimulatorLibPath parameter for your model.

For example, you can use hdlset_param to set XilinxSimulatorLibPath:

libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/
 mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (bdroot, 'XilinxSimulatorLibPath', libpath);

Altera DSP Builder Setup
To generate code for a design containing both Altera DSP Builder and Simulink blocks,
you must open MATLAB with Altera DSP Builder. For details, refer to the Altera DSP
Builder documentation.

FPGA Simulation Library Setup
To map your design to an Altera or a Xilinx FPGA simulator library:

• Use Xilinx LogiCORE® IP Floating-Point Operator v5.0 or Altera floating-point
megafunction IP cores.

• Specify the compiled simulation library and the target language for your EDA
simulator. Use XilinxCoreLib simulation library for Xilinx LogiCORE IP and the EDA
simulation library compiler for Altera megafunction IP.

To learn how to compile this library, refer to the Xilinx compxlib documentation .
• Specify the path to your compiled Altera or Xilinx simulation libraries. Altera provides

the simulation model files in \quartus\eda\sim_lib folder. Set the
SimulationLibPath parameter for your DUT.

For example, you can use hdlset_param to set SimulationLibPath:

myDUT = gcb;
libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/
 mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (myDUT, 'SimulationLibPath', libpath);

 Tool Setup

2-5

You can also specify the simulation library path from the HDL Code Generation >
Test Bench pane in the Configuration Parameters dialog box.

C/C++ Compiler Setup
HDL Coder locates and uses a supported installed compiler. For most platforms, a default
compiler is supplied with MATLAB. For a list of supported compilers, see at https://
www.mathworks.com/support/compilers/current_release/.

See Also

More About
• “Third-Party Synthesis Tools and Version Support” on page 1-3

2 Getting Started with HDL Coder

2-6

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

Tutorials

• “HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm” on page 3-2
• “Create Simulink Model for HDL Code Generation” on page 3-11
• “Check HDL Compatibility of Model Using HDL Model Checker” on page 3-19
• “Generate HDL Code from Simulink Model” on page 3-27
• “Verify Generated Code from Simulink Model Using HDL Test Bench” on page 3-32
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

on page 3-39

3

HDL Code Generation and FPGA Synthesis from a
MATLAB Algorithm

In this section...
“About the Algorithm in This Example” on page 3-2
“Create Local Copy of Design and Testbench Files” on page 3-3
“Set Up Synthesis Tool Path” on page 3-3
“Test the Original MATLAB Algorithm” on page 3-3
“Set Up a Project Using HDL Coder App” on page 3-4
“Open the HDL Coder Workflow Advisor” on page 3-6
“Create Fixed-Point Versions of the Algorithm and Test Bench” on page 3-7
“Generate HDL Code” on page 3-9
“Verify Generated HDL Code” on page 3-9
“FPGA Synthesis and Implementation” on page 3-9

HDL Coder can generate VHDL and Verilog code from MATLAB algorithms, Simulink
models, and Stateflow charts. You can then verify that the generated code matches your
original algorithm, and deploy it on the target hardware.

This example illustrates how you can use HDL Coder to generate and synthesize HDL
code for a MATLAB algorithm that implements a simple filter.

About the Algorithm in This Example
This tutorial uses these files:

• mlhdlc_sfir.m — Simple filter function from which you generate HDL code. To see
the MATLAB code for the FIR filter algorithm, at the command-line, enter:

edit('mlhdlc_sfir')

• mlhdlc_sfir_tb.m — Test bench that the HDL Coder project uses to simulate the
filter using a representative input range. To see the MATLAB code for the FIR filter
test bench, at the command-line, enter:

edit('mlhdlc_sfir_tb')

3 Tutorials

3-2

Create Local Copy of Design and Testbench Files
Before you begin generating code, In the MATLAB path, navigate to a folder that is
writable, and then create a working folder to store the design and test bench files.

1 In your current working folder, create a folder called filter_sfir.

mkdir filter_sfir;
2 Copy the tutorial files, mlhdlc_sfir.m and mlhdlc_sfir_tb.m, to this folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder',...
'hdlcoderdemos', 'matlabhdlcoderdemos');
copyfile(fullfile(mlhdlc_demo_dir, 'mlhdlc_sfir.m'), 'filter_sfir');
copyfile(fullfile(mlhdlc_demo_dir, 'mlhdlc_sfir_tb.m'), 'filter_sfir');

Set Up Synthesis Tool Path
If you want to synthesize the generated HDL code, before you use HDL Coder to generate
code, set up your synthesis tool path. To set up the path to your synthesis tool, use the
hdlsetuptoolpath function. For example, if your synthesis tool is Xilinx Vivado

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
 'C:\Xilinx\Vivado\2017.2\bin\vivado.bat');

To check your Xilinx Vivado synthesis tool setup, launch the tool with the following
command:

!vivado

If you are using another Synthesis tool, to see how to set up the tool path and the right
tool version to use, see “Synthesis Tool Path Setup” on page 2-2.

Test the Original MATLAB Algorithm
To verify the functionality of your MATLAB algorithm, before generating HDL code,
simulate your MATLAB design.

1 Make the filter_sfir folder your working folder, for example:

cd filter_sfir
2 Run the test bench. At the MATLAB command line, enter:

mlhdlc_sfir_tb

 HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm

3-3

The test bench runs and plots the input signal and the filtered output.

Set Up a Project Using HDL Coder App
1 Open the HDL Coder App.

• To open the App from the UI, in MATLAB, on the Apps tab, in the Code
Generation section, select HDL Coder. You can add this App to your favorites.

3 Tutorials

3-4

• To open the App from the command line, enter:

hdlcoder
2 Specify the project name, for example, enter mydesign.

HDL Coder creates the project, mydesign.prj, in the local working folder, and
opens the project in the right side of the MATLAB workspace.

 HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm

3-5

3 Add the design and test bench files. For MATLAB Function, add the
mlhdlc_sfir.m file, and for MATLAB Test Bench, add the mlhdlc_sfir_tb.m
file.

4 To have the App automatically define the data types of the signals, when you add the
MATLAB Function, select Autodefine types. Select the MATLAB Test Bench file
mlhdlc_sfir_tb.m, and then run the test bench.

HDL Coder simulates the algorithm and test bench, and automatically defines input
types. Select Use these types.

Open the HDL Coder Workflow Advisor
Use the HDL Coder Workflow Advisor to convert your algorithm to fixed-point, generate
synthesizable HDL code, and then deploy the code to a target platform. To learn more
about each individual task in the HDL Workflow Advisor, right-click that task, and select
What's This?.

To open the Workflow Advisor, in the project, at the bottom of the pane, select the
Workflow Advisor button. You see that the Define Input Types task has passed.

3 Tutorials

3-6

Create Fixed-Point Versions of the Algorithm and Test Bench
When you run fixed-point conversion, to propose fraction lengths for floating-point data
types, HDL Coder uses the Default word length. In this tutorial, the Default word
length is 14. The advisor provides a default Safety Margin for Simulation Min/Max of
0%. The advisor adjusts the range of the data by this safety factor. For example, a value of
4 specifies that you want a range of at least 4 percent larger.

 HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm

3-7

Select the Fixed-Point Conversion task. The Fixed-Point Conversion tool opens in the
right pane.

1 At the top left, select Analyze.

After the simulation, HDL Coder displays the input signal, filtered output signal, and
the frequency domain plot of input and output signals. If you navigate to Fixed-Point
Conversion tool in the Workflow Advisor Window, you see that each input, output,
and persistent variable has a Sim Min, Sim Max, and Proposed Type in the table.

This example uses the simulation ranges to infer fixed-point types. You can use
Compute Derived Ranges to obtain the range using static range analysis. To learn
more, see “Automated Fixed-Point Conversion”.

2 At the top, in the Verification section, click Validate Types.

HDL Coder validates the build with the proposed fixed-point types and generates a
fixed-point design.

3 At the top, in the Verification section, click the down-arrow for Test Numerics and
select Log inputs and outputs for comparison plots. Click the top part of the Test
Numerics button.

HDL Coder simulates the fixed-point design with the original test bench, compares
the output to the original floating-point design output, and then displays the
difference as an error signal.

3 Tutorials

3-8

4 In the bottom, you see a Verification Output tab. The tab displays a link to the
report mlhdlc_sfir_fixed_report.html. To explore the fixed-point code for the
mlhdlc_sfir function, open the report.

To see the fixed-point code in the MATLAB Editor, in the filter_sfir folder, you
see a codegen folder. When you navigate this folder, you see a mlhdlc_sfir_fixpt
file. Open this file.

Generate HDL Code
1 If you want to synthesize your design on a target FPGA platform, select the Select

Code Generation Target task. Leave Workflow to Generic ASIC/FPGA and
specify the Synthesis tool. If you don't see the synthesis tool, select Refresh list.

2 Before generating code, to customize code generation options, in the HDL Code
Generation task, use the Target, Coding Style, Clocks and Ports, Optimizations,
Advanced, and Script Options tabs

3 To generate HDL code, in the HDL Code Generation task, select Run.

The message window has a links to the generated HDL code and the resource report.
Click the links to view the code and resource report.

Verify Generated HDL Code
1 In the HDL Workflow Advisor left pane, select HDL Verification > Verify with HDL

Test Bench task.
2 Enable Generate HDL test bench and disable Skip this step. Enable Simulate

generated HDL test bench and select a simulation tool. Click Run.

The task generates an HDL test bench, then simulates the fixed-point design using
the selected simulation tool, and generates a compilation report and a simulation
report.

FPGA Synthesis and Implementation
1 Select Synthesis and Analysis and disable Skip this step. Run the Create Project

task.

This task creates a synthesis project for the HDL code. HDL Coder uses this project
in the next task to synthesize the design.

 HDL Code Generation and FPGA Synthesis from a MATLAB Algorithm

3-9

2 Select and run Run Synthesis task. This task:

• Launches the synthesis tool in the background.
• Opens the synthesis project created in the previous task, compiles HDL code,

synthesizes the design, and emits netlists and related files.
• Generates a synthesis report.

3 Select and run Run Implementation task. This task:

• Launches the synthesis tool in the background.
• Runs a Place and Route process that takes the circuit description produced by the

previous mapping process, and emits a circuit description suitable for
programming an FPGA.

• Emits pre- and post-routing timing information for use in critical path analysis and
back annotation of your source model.

See Also

Related Examples
• “”
• “”
• “”

3 Tutorials

3-10

Create Simulink Model for HDL Code Generation
In this section...
“Open Model and HDL Coder Library” on page 3-11
“Develop Design and Test Bench” on page 3-14
“Simulate and Verify Functionality of Design” on page 3-16
“Check Model for HDL Compatibility” on page 3-17

HDL Coder can generate VHDL and Verilog code from MATLAB code, Simulink models,
and Stateflow charts. You can then verify that the generated code matches your original
algorithm, and deploy it on the target hardware.

This example illustrates how you can create a Simulink model for HDL code generation.
The model is a simple up counter algorithm that wraps back to zero after it reaches the
upper limit that you specify.

Open Model and HDL Coder Library
1

Start MATLAB. From the MATLAB toolstrip, click the Simulink button . Then, in
the HDL Coder section, select the Blank DUT template.

Selecting this template opens a Simulink model that is preconfigured for HDL code
generation. Save the model with a file name such as
hdlcoder_simple_up_counter.slx in a working folder that is writable.

 Create Simulink Model for HDL Code Generation

3-11

When you create a model for HDL code generation, you partition the model into a
Design-Under-Test (DUT) and a test bench. The DUT is a Subsystem that is mostly at
the top level of your model, and contains the algorithm for which you generate HDL
code. Blocks outside this Subsystem form the test bench, and contains inputs to the
Subsystem and output values that are logged. The test bench ensures that the DUT
functionality is as expected.

For the test bench, you can use blocks that are not supported for HDL code
generation. In the Blank DUT template, the model has a HDL_DUT Subsystem that
corresponds to the DUT. Blocks outside the HDL_DUT Subsystem form the test
bench. See also “Use Simulink Templates for HDL Code Generation”.

2 Open the HDL Coder Block Library for designing your counter algorithm. To filter
the Simulink Library Browser to show block libraries that support HDL code
generation, use the hdllib function. At the MATLAB command-line, enter:

hdllib

3 Tutorials

3-12

In the HDL Coder library, you see several blocks that are pre-configured for HDL
code generation. Blocks in this library are available with Simulink. If you do not have
HDL Coder, you can simulate the blocks in your model, but cannot generate HDL
code.

You can find additional HDL-supported blocks in these block libraries:

• DSP System Toolbox HDL Support

 Create Simulink Model for HDL Code Generation

3-13

• Communications Toolbox HDL Support
• Vision HDL Toolbox
• LTE HDL Toolbox

To restore the Library Browser to the default view, enter:

hdllib('off')

Note The set of supported blocks tend to change each release. Rebuild your
supported blocks library each time you install a new version of this product.

Develop Design and Test Bench
1 Double-click the HDL_DUT Subsystem. Drag blocks from the HDL Coder library and

add them to your model. This table illustrates the blocks to add to your model for
designing the up counter. To learn about what a block does, and to specify the block
parameters for that block, double-click the block.

Block Library Number of
Blocks

Block Parameters

Constant Sources 2 • Constant values: 1
and 0

• Output data type:
uint32

Switch Signal Routing 2 Criteria for passing first
input: u2 > Threshold

Delay Discrete 2 Delay length: 1
Add Math Operations 1 Accumulator data type:

Inherit: Same as first
input

Relational
Operator

Logic and Bit
Operations

1 Relational operator: >

2 Rename the input ports In1 and In2 to count_threshold and Enable respectively.
Place the blocks in your model and connect them as shown in figure.

3 Tutorials

3-14

The Enable signal specifies whether the counter should count upwards from the
previous value. When the Enable signal is logic high, the counter counts up from
zero to the count_threshold value. When the value of out becomes equal to the
count_threshold value, the counter wraps back to zero and starts counting again.
When the Enable signal becomes logic low, the counter holds the previous value.

3 Navigate to the top level of the model and change the input settings.

• Constant block input to count_threshold: This input decides the maximum
value up to which the counter should count. This example illustrates how to
design a 4-bit up counter. Therefore, set the Constant value to 15 (2^4 - 1), and
set the Output data type to uint32.

Note Make sure that the output data type of this Constant block matches the
output data type of the Constant blocks inside the HDL_DUT Subsystem.

• Counter Free-Running block input to Enable: For this example, remove the
Counter Free-Running block. Replace this block with a Constant block that has a
value of 1 and Output data type set to boolean.

This figure shows the top level of your model after you have applied these settings.

 Create Simulink Model for HDL Code Generation

3-15

To learn more about how to create a model, see “Create a Simple Model” (Simulink).

Simulate and Verify Functionality of Design

Simulate your model by pressing the button. To see the simulation results, open the
Scope block at the top level of your model. The simulation results display the Enable
signal at the top generating a constant value of 1 and the out signal counting from 0 to
15, then wrapping back to zero, and then counting up again. This figure displays the
waveform of the output signal out.

3 Tutorials

3-16

Check Model for HDL Compatibility
You have now simulated the model and verified the functionality of your design. Before
you generate HDL code, you must verify that the model settings are compatible for HDL
code generation. To make your design compatible for HDL code generation, you use the
HDL Model Checker. To learn how to use the HDL Model Checker, see “Check HDL
Compatibility of Model Using HDL Model Checker” on page 3-19.

See Also
checkhdl | hdllib | hdlmodelchecker | hdlsetup

More About
• “Use Simulink Templates for HDL Code Generation”

 See Also

3-17

• “Generate HDL Code from Simulink Model” on page 3-27
• “Verify Generated Code from Simulink Model Using HDL Test Bench” on page 3-32
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

on page 3-39

3 Tutorials

3-18

Check HDL Compatibility of Model Using HDL Model
Checker

In this section...
“Simple Up Counter Model” on page 3-19
“Open the HDL Model Checker” on page 3-20
“How to Run Checks In the HDL Model Checker” on page 3-21
“Run Checks for Counter Model” on page 3-22
“Fix HDL Model Checker Warnings or Failures” on page 3-23
“Caveats” on page 3-25
“Generate HDL Code” on page 3-26

HDL Coder can generate VHDL and Verilog code from MATLAB code, Simulink models,
and Stateflow charts. You can then verify that the generated code matches your original
algorithm, and deploy it on the target hardware.

Before you can generate HDL code, it is recommended that you verify the compatibility of
your algorithm modeled in Simulink for HDL code generation. To verify model
compatibility, you use the HDL Model Checker. The HDL Model Checker verifies and
updates your Simulink model or subsystem for compatibility with HDL code generation.
The Model Checker checks for model configuration settings, ports and subsystem
settings, block settings, support for native floating point, and conformance to the
industry-standard rules. The Model Checker produces a report that lists suboptimal
conditions or settings, and then proposes better model configuration settings.

This example shows how you can update a simple up counter model for HDL
compatibility. To learn more about the counter algorithm and how you can create this
model, see “Create Simulink Model for HDL Code Generation” on page 3-11.

Simple Up Counter Model
Open this model to see a simple up counter. The model counts up from zero to a threshold
value and then wraps back to zero. In this model, the threshold value is set to 15. You can
change the threshold value by changing the value of the Constant block that is input to
the count_threshold port. The Enable signal specifies whether the counter should
count up or hold the previous value. The Enable signal is set to 1 which means that the
counter counts upwards continuously.

 Check HDL Compatibility of Model Using HDL Model Checker

3-19

open_system('hdlcoder_simple_up_counter.slx')
set_param('hdlcoder_simple_up_counter', 'SimulationCommand', 'Update')

Open the HDL Model Checker
To open the HDL Model Checker, right-click the Subsystem that you want to run the
checks and select HDL Code > Check Model Compatibility.

Note You open the HDL Model Checker and then run checks for the DUT Subsystem that
you want to generate code for. The top level model can contain blocks that are not
compatible for HDL code generation. Running the HDL Model Checker for the entire
model can flag these blocks and your model as incompatible for HDL code generation.

In the HDL Model Checker, the left pane lists the folders in the hierarchy. Each folder
represents a group or category of related checks. Expanding the folders shows available
checks in each folder. From the left pane, you can select a folder or an individual check.
The HDL Model Checker displays information about the selected folder or check in the
right pane. The content of the right pane depends on the selected folder or check. The
right pane has a Result subpane that contains a display area for status messages and
other task results.

3 Tutorials

3-20

To learn more about each individual check, right-click that check, and select What's
This?.

How to Run Checks In the HDL Model Checker
In the HDL Model Checker window, you can run individual checks or a group of checks.
To run a check, Select that check and then click Run This Check. For example, to run
the Check for safe model parameters, select the check box, and then click Run This
Check.

In the HDL Model Checker window, you can run a group of checks within a folder.

1 Select the checks that you want to run.
2 Select the folder that contains these checks and then click Run Selected Checks.

This example shows how to run selected checks in the Model configuration checks
folder.

 Check HDL Compatibility of Model Using HDL Model Checker

3-21

Run Checks for Counter Model
By using this approach, for your counter model, run all checks in these folders:

• Model Configuration checks
• Checks for ports and subsystems
• Checks for blocks and block settings

For this example, you do not need to run the checks in Native Floating Point checks
and Industry standard checks folders. To learn more about these checks, see “Model
Checks in HDL Coder”.

For the counter model, the checks display the results as Passed, which means that the
model is compatible for HDL code generation.

3 Tutorials

3-22

Fix HDL Model Checker Warnings or Failures
In the HDL Model Checker, if a check fails, the right pane shows the warning or failure
information in a Result subpane. The Result subpane displays model settings that are
not compliant. For some tasks, use the Action subpane to apply the Model Checker
recommended settings.

For example, inside the HDL_DUT Subsystem, consider that you remove the Enable port
and replace this port with a Constant input that has a value of 1.

 Check HDL Compatibility of Model Using HDL Model Checker

3-23

Now, if you run the Check for infinite and continuous sample time sources check,
the HDL Model Checker displays this warning.

3 Tutorials

3-24

To apply the correct model configuration settings that the code generator reported in the
Result subpane, click the Modify Settings button. After you click Modify Settings, the
Result subpane reports the changes that were applied. In this example, the Sample time
of the Constant block is reset to -1. You can now run this check.

Caveats
• If you reference one model in another by using a Model block, the HDL Model Checker

checks the model configurations or settings of the parent model. To check whether the
referenced model is compatible with HDL code generation, open the HDL Model
Checker for the referenced model, and then run the checks.

 Check HDL Compatibility of Model Using HDL Model Checker

3-25

• If you run the checks on masked library blocks in your Simulink model, the Model
Checker cannot verify whether the blocks inside the library blocks have HDL-
compatible settings.

• When you apply Model Advisor checks to your model, it increases the likelihood that
your model does not violate certain modeling standards or guidelines. However, it does
not guarantee that the design is ready for HDL code generation. Make sure that you
verify the design by using multiple methods for HDL code generation readiness.

Generate HDL Code
The counter model is now compatible for HDL code generation. You can generate HDL
code for the HDL_DUT Subsystem, which contains the counter algorithm. To learn how to
generate code, see “Generate HDL Code from Simulink Model” on page 3-27.

See Also
checkhdl | hdlmodelchecker | hdlsetup

More About
• “Model Checks in HDL Coder”
• “Verify Generated Code from Simulink Model Using HDL Test Bench” on page 3-32
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

on page 3-39

3 Tutorials

3-26

Generate HDL Code from Simulink Model
In this section...
“Simple Up Counter Model” on page 3-27
“Generate HDL Code” on page 3-28
“View HDL Code Generation Files” on page 3-30
“Verify Generated HDL Code” on page 3-30

HDL Coder can generate VHDL and Verilog code from MATLAB code, Simulink models,
and Stateflow charts. You can then verify that the generated code matches your original
algorithm, and deploy it on the target hardware.

This example shows how you can generate HDL code for a simple Counter model. The
model is a simple up counter that counts up from zero to a threshold value and then
wraps back to zero. Before you generate HDL code for this model, it is recommended that
you verify the HDL compatibility of your model by using the HDL Model Checker. To learn
how to:

• Create this counter model, see “Create Simulink Model for HDL Code Generation” on
page 3-11.

• Check HDL compatibility of the counter model, see “Check HDL Compatibility of
Model Using HDL Model Checker” on page 3-19.

By default, HDL Coder creates an hdlsrc folder in the current working folder to
generate the HDL files. Therefore, before you proceed to generate HDL code, make sure
that your current working folder is writeable.

Simple Up Counter Model
Open this model to see a simple up counter. The model counts up from zero to a threshold
value and then wraps back to zero. In this model, the threshold value is set to 15. You can
change the threshold value by changing the value of the Constant block that is input to
the count_threshold port. The Enable signal specifies whether the counter should
count up or hold the previous value. The Enable signal is set to 1 which means that the
counter counts upwards continuously.

open_system('hdlcoder_simple_up_counter.slx')
set_param('hdlcoder_simple_up_counter', 'SimulationCommand', 'Update')

 Generate HDL Code from Simulink Model

3-27

Generate HDL Code
To generate code for your DUT with the default settings, use the context menu available
in the Simulink Editor. For the counter model, the HDL_DUT Subsystem is the DUT. To
generate code, right-click the HDL_DUT Subsystem and select HDL Code > Generate
HDL for Subsystem. By default, HDL Coder generates VHDL code in the target hdlsrc
folder.

If you want to generate Verilog code, you can specify this setting in the HDL Code
Generation pane of the Configuration Parameters dialog box. Before you generate code,
you can also customize model-level settings for your design such as enable native floating-
point support, generate resource and traceability reports, use model-level optimizations,
and modify other global settings.

To generate Verilog code for the counter model:

1 For Generate HDL for, specify the DUT, Counter/HDL_DUT.
2 For Language, select Verilog. Leave Folder to hdlsrc, which is the default.
3 Click Generate to generate HDL code.

3 Tutorials

3-28

HDL Coder compiles the model before generating code. Depending on model display
options such as port data types, the model can change in appearance after code
generation. As code generation proceeds, HDL Coder displays progress messages in the
MATLAB command line with:

• Link to the Configuration Set that indicates the model for which the Configuration
Parameters are applied.

• Links to the generated files. To view the files in the MATLAB Editor, click the links.

The process completes with the message:

HDL Code Generation Complete.

 Generate HDL Code from Simulink Model

3-29

View HDL Code Generation Files
A folder icon for the hdlsrc folder is now visible in the Current Folder browser. To view
generated code and script files, double-click the hdlsrc folder icon. In the folder, you see
a file containing the VHDL or Verilog code, a script to compile the generated code, a
synthesis script, and a mapping file. For example, if you generated code for the
symmetric_fir Subsystem, you see these files in the hdlsrc folder:

• HDL_DUT.vhd: This file is the VHDL code that contains the entity definition and RTL
architecture implementing the up counter that you designed.

Note If you generated Verilog code, you get a HDL_DUT.v file.
• HDL_DUT_compile.do: Mentor Graphics ModelSim compilation script. To invoke this

script and compile the generated VHDL code, you use the vcom command.
• HDL_DUT_synplify.tcl: This file is a Synplify® synthesis TCL script.
• HDL_DUT_map.txt: This report file is a mapping file that generated entities or

modules to the subsystems that generated them. See “Trace Code Using the Mapping
File”.

• HDL_DUT_report.html: This file is a HDL Code Generation Check report displays
the status of HDL code generation and any warnings or messages. If HDL code
generation fails, you see the cause of failure in the Check report.

• gm_hdlcoder_simple_up_counter.slx: This file is a generated model that
behaviorally represents the HDL code in the Simulink modeling environment. For
more information, see “Generated Model and Validation Model”.

Verify Generated HDL Code
Before you proceed to deploy your design on the target hardware, you must verify the
generated HDL code. From the hdlsrc folder, navigate to the current working folder. To
learn how you can verify the generated HDL code, see “Verify Generated Code from
Simulink Model Using HDL Test Bench” on page 3-32.

See Also
hdlset_param | hdlsetup | makehdl

3 Tutorials

3-30

More About
• “Create Simulink Model for HDL Code Generation” on page 3-11
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

on page 3-39

 See Also

3-31

Verify Generated Code from Simulink Model Using HDL
Test Bench

In this section...
“Simple Up Counter Model” on page 3-32
“How to Verify the Generated Code” on page 3-33
“What is a HDL Test Bench?” on page 3-33
“Generate HDL Test Bench” on page 3-34
“View HDL Test Bench Files” on page 3-35
“Run Simulation and Verify Generated HDL Code” on page 3-36
“Deploy Generated HDL Code on Target Device” on page 3-37

This example shows how to generate a HDL test bench and verify the generated code for
your design. The example assumes that you have already generated HDL code for your
model. This example illustrates how to verify the generated code for a simple up counter.
To learn more about this counter model and how to generate HDL code, see “Generate
HDL Code from Simulink Model” on page 3-27.

Note If you haven't already generated HDL code, you can still open this model and
generate the HDL test bench. Before generating the test bench, HDL Coder runs code
generation to ensure that there is at least one successful code generation run before
generating the testbench.

Simple Up Counter Model
Open this model to see a simple up counter. The model counts up from zero to a threshold
value and then wraps back to zero. In this model, the threshold value is set to 15. You can
change the threshold value by changing the value of the Constant block that is input to
the count_threshold port. The Enable signal specifies whether the counter should
count up or hold the previous value. The Enable signal is set to 1 which means that the
counter counts upwards continuously.

open_system('hdlcoder_simple_up_counter.slx')
set_param('hdlcoder_simple_up_counter', 'SimulationCommand', 'Update')

3 Tutorials

3-32

How to Verify the Generated Code
This example illustrates how to generate a HDL test bench to simulate and verify the
generated HDL code for your design. You can also verify the generated HDL code from
your model using these methods:

Verification Method For More Information
Validation Model “Generated Model and Validation Model”
HDL Cosimulation (requires HDL Verifier) “Cosimulation”
FPGA-in-the-Loop “FPGA-in-the-Loop”
SystemVerilog DPI Test Bench “SystemVerilog DPI Test Bench”

What is a HDL Test Bench?
To verify the functionality of the HDL code that you generated for the DUT, generate a
HDL test bench. A test bench includes:

• Stimulus data generated by signal sources connected to the entity under test.
• Output data generated by the entity under test. During a test bench run, this data is

compared to the outputs of the VHDL model, for verification purposes.

 Verify Generated Code from Simulink Model Using HDL Test Bench

3-33

• Clock, reset, and clock enable inputs to drive the entity under test.
• A component instantiation of the entity under test.
• Code to drive the entity under test and compare its outputs to the expected data.

You can simulate the generated test bench and script files with the Mentor Graphics
ModelSim simulator.

Generate HDL Test Bench
Depending on whether you generated VHDL or Verilog code, generate VHDL or Verilog
test bench code. The test bench code drives the HDL code that you generated for the
DUT. By default, the HDL code and the test bench code are written to the same target
folder hdlsrc relative to the current folder.

To generate testbench code for the counter model:

1 In the HDL Code Generation pane, for Generate HDL for, make sure that you
specified the DUT, Counter/HDL_DUT.

Note If you specify the entire model as your DUT, HDL test bench cannot be
generated.

2 By default, the testbench code is generated in VHDL. To generate Verilog testbench
code, for Language, select Verilog. Leave Folder to hdlsrc, which is the default.

3 In the HDL Code Generation > Test Bench pane, make sure that you select HDL
test bench and Simulation tool as Mentor Graphics Modelsim. Click Generate
Test Bench to generate HDL testbench code.

3 Tutorials

3-34

View HDL Test Bench Files
1 If you haven't already generated code for your model, HDL Coder compiles the model

and generates HDL code before generating the test bench. Depending on model
display options such as port data types, the model can change in appearance after
code generation.

As test bench generation proceeds, HDL Coder displays progress messages. The
process should complete with the message

HDL TestBench Generation Complete.

 Verify Generated Code from Simulink Model Using HDL Test Bench

3-35

2 After generating the test bench, you see the generated files in the hdlsrc folder. For
example, if you generated a test bench for the HDL_DUT Subsystem in your up
counter model, the folder contains:

• HDL_DUT_tb.vhd: VHDL test bench code, with generated test and output data.

Note If you generated Verilog test bench code, the generated file is
HDL_DUT_tb.v.

• HDL_DUT_tb_pkg.vhd: Package file for VHDL test bench code. This file is not
generated if you specified Verilog as the target language.

• HDL_DUT_tb_compile.do: Mentor Graphics ModelSim compilation script (vcom
commands). This script compiles and loads the entity to be tested (HDL_DUT.vhd)
and the test bench code (HDL_DUT_tb.vhd).

• HDL_DUT_tb_sim.do: Mentor Graphics ModelSim script to initialize the
simulator, set up wave window signal displays, and run a simulation.

3 To view the generated test bench code in the MATLAB Editor, double-click the
HDL_DUT_tb.vhd or HDL_DUT_tb.v file in the Current Folder.

Run Simulation and Verify Generated HDL Code
To verify the simulation results, you can use the Mentor Graphics ModelSim simulator.
Make sure that you have already installed Mentor Graphics ModelSim.

To launch the simulator, use the vsim function. This command shows how to open the
simulator by specifying the path to the executable:
vsim('vsimdir','C:\Program Files\ModelSim\questasim\10.6b\win64\vsim.exe')

To compile and run a simulation of the generated model and test bench code, use the
scripts that are generated by HDL Coder. Following example illustrates the commands
that compile and simulate the generated test bench for the
hdlcoder_simple_up_counter/HDL_DUT Subsystem.

1 Open the Mentor Graphics ModelSim software and navigate to the folder that has the
generated code files and the scripts.

2 Use the generated compilation script to compile and load the generated model and
text bench code. For example, if you generated a test bench for the
hdlcoder_simple_up_counter/HDL_DUT Subsystem, run this command to
compile the generated code.

3 Tutorials

3-36

QuestaSim>do HDL_DUT_tb_compile.do

3 Use the generated simulation script to execute the simulation. The following listing
shows the command and responses. You can ignore any warning messages. The test
bench termination message indicates that the simulation has run to completion
without comparison errors. For example, if you generated a test bench for the
hdlcoder_simple_up_counter/HDL_DUT Subsystem, run this command to
simulate the generated code.

QuestaSim>do HDL_DUT_tb_sim.do

The simulator optimizes your design and displays the results of simulating your HDL
design in a wave window. if you don't see the simulation results, open the wave
window. The simulation script displays inputs and outputs in the model including the
clock , reset, and clock enable signals in the wave window.

You can now view the signals and verify that the simulation results match the
functionality of your original design. After verifying, close the Mentor Graphics ModelSim
simulator, and then close the files that you have opened in the MATLAB Editor.

Deploy Generated HDL Code on Target Device
After you verified the functionality of your HDL design, you can deploy the generated
code on a target FPGA device. For deployment, you use the Simulink HDL Workflow
Advisor. To learn how more, see “HDL Code Generation and FPGA Synthesis Using
Simulink HDL Workflow Advisor” on page 3-39.

 Verify Generated Code from Simulink Model Using HDL Test Bench

3-37

See Also
makehdl | makehdltb

More About
• “Test Bench Generation Output”
• “HDL Test Bench”
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

on page 3-39

3 Tutorials

3-38

HDL Code Generation and FPGA Synthesis Using
Simulink HDL Workflow Advisor

In this section...
“Simple Up Counter Model” on page 3-39
“About HDL Workflow Advisor” on page 3-40
“Set Up Tool Path” on page 3-40
“Open the HDL Workflow Advisor” on page 3-41
“Generate HDL Code” on page 3-42
“Perform FPGA Synthesis and Analysis” on page 3-43
“Run Workflow at Command Line with a Script” on page 3-44

This example shows how you can use the HDL Workflow Advisor to generate HDL code
and synthesize your design on a target Xilinx FPGA.

For this tutorial, you can use a simple up counter model that you created as a source for
HDL code generation. The model simulates an up counter that counts from zero to a
threshold value and then wraps back to zero. To learn how to create this model, see
“Create Simulink Model for HDL Code Generation” on page 3-11.

Simple Up Counter Model
Open this model to see a simple up counter. The model counts up from zero to a threshold
value and then wraps back to zero. In this model, the threshold value is set to 15. You can
change the threshold value by changing the value of the Constant block that is input to
the count_threshold port. The Enable signal specifies whether the counter should
count up or hold the previous value. The Enable signal is set to 1 which means that the
counter counts upwards continuously.

open_system('hdlcoder_simple_up_counter.slx')
set_param('hdlcoder_simple_up_counter', 'SimulationCommand', 'Update')

 HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor

3-39

About HDL Workflow Advisor
The HDL Workflow Advisor guides you through the stages of generating HDL code for a
Simulink subsystem and the FPGA design process, such as:

• Checking the model for HDL code generation compatibility and automatically fixing
incompatible settings.

• Generation of HDL code, a test bench, and scripts to build and run the code and test
bench.

• Generation of cosimulation or SystemVerilog DPI test benches and code coverage
(requires HDL Verifier).

• Synthesis and timing analysis through integration with third-party synthesis tools.
• Back-annotation of the model with critical path information and other information

obtained during synthesis.
• Complete automated workflows for selected FPGA development target devices and the

Simulink Real-Time FPGA I/O workflow, including FPGA-in-the-loop simulation.

Set Up Tool Path
If you do not want to synthesize your design, but want to generate HDL code, you do not
have to set the tool path. In the HDL Workflow Advisor, on the Set Target > Set Target

3 Tutorials

3-40

Device and Synthesis Tool step, leave the Synthesis tool setting to the default No
Synthesis Tool Specified, and then run the workflow.

If you want to synthesize your design on a target platform, before you open the HDL
Workflow Advisor and run the workflow, set up the path to your Synthesis tool. This
example uses Xilinx Vivado, so you must have already installed Xilinx Vivado. To set the
tool path, use the hdlsetuptoolpath function to point to an installed Xilinx Vivado
2018.2 executable. To learn about the latest supported tools, see “Supported Third-Party
Tools and Hardware” on page 1-3.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...
 'C:\Xilinx\Vivado\2018.2\bin\vivado.bat');

Note Optionally, you can use a different synthesis tool of your choice and follow this
example. To set the path to that synthesis tool, use hdlsetuptoolpath.

Open the HDL Workflow Advisor
To start the HDL Workflow Advisor from a Simulink model:

• From the Simulink Editor, right-click the DUT subsystem and select HDL Code >
HDL Workflow Advisor.

• From the command line, select the DUT subsystem, and use the hdladvisor
function:

hdladvisor(gcb)

When you open the HDL Workflow Advisor, the code generator can warn that the project
folder is incompatible. To open the Advisor, select Remove slprj and continue.

In the HDL Workflow Advisor, the left pane lists the folders in the hierarchy. Each folder
represents a group or category of related tasks. Expanding the folders shows available
tasks in each folder. From the left pane, you can select a folder or an individual task. The
HDL Workflow Advisor displays information about the selected folder or task in the right
pane. The contents of the right pane depends on the selected folder or task. For some
tasks, the right pane contains simple controls for running the task and a display area for
status messages and other task results. For other tasks that involve setting code or test
bench generation parameters, the right pane displays several parameter and option
settings.

To learn more about each individual task, right-click that task, and select What's This?.

 HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor

3-41

To learn more about the HDL Workflow Advisor window, see “Getting Started with the
HDL Workflow Advisor”.

Generate HDL Code
1 In the Set Target > Set Target Device and Synthesis Tool step, for Synthesis

tool, select Xilinx Vivado and select Run This Task.

2 In Set Target Frequency task, specify a “Target Frequency” that you want the
design to achieve. For this example, you can set Target Frequency (MHz) to 200.

3 Tutorials

3-42

3 Leave all settings to default and right-click the Check Sample Times task and select
Run to Selected Task.

By running the tasks in the Prepare Model For HDL Code Generation folder, the
HDL Workflow Advisor checks the model for code generation compatibility.

Note If running a task generates a warning, select Modify All, and rerun the task.
4 To modify code generation options, use the tasks in Set Code Generation Options.

For example, to customize the target HDL language and the target code generation
folder, use the Set Basic Options task. After you make changes, click Apply.

5 To generate code, right-click the Generate RTL Code and Testbench task, and
select Run to Selected Task.

Note If you want to generate an HDL test bench or a validation model, you can
specify the corresponding settings in the Generate RTL Code and Testbench task.
To specify additional test bench options, use the Set Testbench Options task.

Perform FPGA Synthesis and Analysis
1 In the FPGA Synthesis and Analysis > Perform Synthesis and P/R > Perform

Place and Route task, unselect Skip this task and click Apply.
2 Right-click Annotate Model with Synthesis Result and select Run to Selected

Task.
3 View the annotated critical path in the model.

 HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor

3-43

Run Workflow at Command Line with a Script
To run the HDL workflow at a command line, you can export the Workflow Advisor
settings to a script. To export to script, in the HDL Workflow Advisor window, select File
> Export to Script. In the Export Workflow Configuration dialog box, enter a file name
and save the script.

The script is a MATLAB file that you can run from the command line. You can modify the
script directly or, import the script into the HDL Workflow Advisor, modify the tasks, and
export the updated script. To learn more, see “Run HDL Workflow with a Script”.

See Also
hdladvisor | hdlsetuptoolpath | makehdl

More About
• “Tool Setup” on page 2-2
• “Create Simulink Model for HDL Code Generation” on page 3-11
• “Generate HDL Code from Simulink Model” on page 3-27

3 Tutorials

3-44

